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İşletme Mühendisliği Programı
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Figure 3.2 : Non-linear model of a neuron............................................................ 18
Figure 3.3 : The ANN structure. ........................................................................... 18
Figure 4.1 : MF of input variables for TOM estimation using all data:

(a)Factor1. (b)Factor2. (c)GRP........................................................... 31
Figure 4.2 : TOM and estimated TOM using all data: (a)Correlations.

(b)Scatter plot...................................................................................... 33
Figure 4.3 : SOV and estimated SOV using all data: (a)Correlations.

(b)Scatter plot...................................................................................... 33
Figure 4.4 : Spontan and estimated Spontan using all data: (a)Correlations.

(b)Scatter plot...................................................................................... 34
Figure 4.5 : RMSE of test data using all data: (a)TOM. (b)SOV. (c)Spontan. ..... 34
Figure 4.6 : TOM and estimated TOM using FMCG data: (a)Correlations.

(b)Scatter. ............................................................................................ 35
Figure 4.7 : SOV and estimated SOV using FMCG data: (a)Correlations.

(b)Scatter plot...................................................................................... 35
Figure 4.8 : Spontan and estimated Spontan using FMCG data:

(a)Correlations. (b)Scatter plot. .......................................................... 36
Figure 4.9 : RMSE of test data using FMCG data: (a)TOM. (b)SOV. (c)Spontan. 36
Figure 4.10: TOM and estimated TOM using non-FMCG data:

(a)Correlations. (b)Scatter plot. .......................................................... 38
Figure 4.11: SOV and estimated SOV using non-FMCG data: (a)Correlations.

(b)Scatter plot...................................................................................... 39
Figure 4.12: Spontan and estimated Spontan using non-FMCG data:

(a)Correlations. (b)Scatter plot. .......................................................... 39
Figure 4.13: RMSE of test data using non-FMCG data: (a)TOM. (b)SOV.

(c)Spontan. .......................................................................................... 40
Figure 4.14: TOM and estimated TOM of company E. ......................................... 40
Figure 4.15: SOV and estimated SOV of company E. ........................................... 40
Figure 4.16: Spontan and estimated spontan of company E. ................................. 41
Figure 4.17: TOM and estimated TOM of company B.......................................... 41
Figure 4.18: SOV and estimated SOV of company B............................................ 41
Figure 4.19: Spontan and estimated spontan of company B.................................. 42
Figure 4.20: Measured and predicted data using all data: (a)TOM. (b)SOV.

(c)Spontan. .......................................................................................... 43
Figure 4.21: Measured and predicted data using FMCG data: (a)TOM.

(b)SOV. (c)Spontan. ............................................................................ 44

xvii



Figure 4.22: Measured and predicted data using non-FMCG data: (a)TOM.
(b)SOV. (c)Spontan. ............................................................................ 45

Figure 4.23: The GUI of DSS. ............................................................................... 46
Figure 4.24: The interface with ANFIS prediction. ............................................... 47
Figure 4.25: The interface with ANFIS prediction and error................................. 47
Figure 4.26: The interface with ANFIS and ANN predictions and ANFIS error. . 48
Figure 4.27: The interface with ANFIS and ANN predictions and errors. ............ 48
Figure A.1 : Membership functions of input variables for SOV estimation

using all data: (a)Factor1. (b)Factor2. (c)GRP. .................................. 58
Figure A.2 : Membership functions of input variables for spontan estimation

using all data: (a)Factor1. (b)Factor2. (c)GRP. .................................. 59
Figure A.3 : Membership functions of input variables for TOM estimation

using FMCG data: (a)Factor1. (b)Factor2. (c)GRP............................ 60
Figure A.4 : Membership functions of input variables for SOV estimation

using FMCG data: (a)Factor1. (b)Factor2. (c)GRP............................ 61
Figure A.5 : Membership functions of input variables for spontan estimation

using FMCG data: (a)Factor1. (b)Factor2. (c)GRP............................ 62
Figure A.6 : Membership functions of input variables for TOM estimation

using non-FMCG data: (a)Factor1. (b)Factor2. (c)GRP. ................... 63
Figure A.7 : Membership functions of input variables for SOV estimation

using non-FMCG data: (a)Factor1. (b)Factor2. (c)GRP. ................... 64
Figure A.8 : Membership functions of input variables for spontan estimation

using non-FMCG data: (a)Factor1. (b)Factor2. (c)GRP. ................... 65
Figure A.9 : Scatter plot of estimated and measured data of company A:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 66
Figure A.10: Scatter plot of estimated and measured data of company C:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 67
Figure A.11: Scatter plot of estimated and measured data of company D:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 68
Figure A.12: Scatter plot of estimated and measured data of company F:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 69
Figure A.13: Scatter plot of estimated and measured data of company G:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 70
Figure A.14: Scatter plot of estimated and measured data of company H:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 71
Figure A.15: Scatter plot of estimated and measured data of company I:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 72
Figure A.16: Scatter plot of estimated and measured data of company J:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 73
Figure A.17: Scatter plot of estimated and measured data of company K:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 74
Figure A.18: Scatter plot of estimated and measured data of company L:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 75
Figure A.19: Scatter plot of estimated and measured data of company M:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 76
Figure A.20: Scatter plot of estimated and measured data of company N:

(a)TOM. (b)SOV. (c)Spontan.............................................................. 77

xviii



Figure A.21: Scatter plot of estimated and measured data of company O:
(a)TOM. (b)SOV. (c)Spontan.............................................................. 78

xix



xx



MODELLING THE EFFECTS OF BRAND IMAGE COMPONENTS ON
ADVERTISING AWARENESS USING A NEURO-FUZZY SYSTEM

SUMMARY

Almost all the worldwide and nationwide companies utilize advertising to increase
their sales volume and profit. These companies pay millions of dollars to reach
consumers and announce their products or services. This forces companies to evaluate
the advertising and check whether ads meet company’s strategies. They need to
evaluate the ads not only after announcement, but also before advertising, i.e. they can
be one step ahead by predicting the future through artificial intelligence tools such as
fuzzy systems and artificial neural networks.

The emergence of fuzzy logic and fuzzy sets has revolutionized the mathematics and
engineering sciences. Fuzzy sets consider not only classical membership degrees, i.e.
0 and 1, but concern with all the degrees between zero and one. This enables fuzzy
sets to mathematically represent linguistic variables and human judgment. It can deal
with the uncertainty of decision maker’s assessments and practically enhance decision
making process. Rule based fuzzy systems basically apply fuzzy sets and process the
inputs by IF-THEN rules to infer, and provide defuzzified outputs.

Neural network (NN) is a fast-growing branch of artificial intelligence, and
simultaneously, it is widely used in different fields in order to deal with complex
datasets. NN can be properly applied in estimation, clustering, compression, and
filtering. The estimation ability of NN is highly needed to evaluate decisions before
decision making moment. This would provide an inferred knowledge beforehand,
which is a vital need in today’s turbulent market.

In this study, we propose to use a well-known combined neuro-fuzzy method, adaptive
neuro-fuzzy inference system (ANFIS), to analyze advertising decision making.
Although advertising data are highly complex and mixed with non-linearity, ANFIS is
able to receive input data and estimate the output(s). Here, using dimension reduction
method, 30 variables of brand image on advertising awareness reduced to 2 variables.
Then, ANFIS creates fuzzy rules and trains the network using input data. This training
ability of ANFIS leads to predict the advertising awareness outputs. In this study, we
investigate three advertising awareness outputs, namely, top of mind, share of voice,
and spontan.

In order to validate the ANFIS estimation, 30 percent of data are randomly split as
the testing data and remained 70 percent are training data. The root mean square
error (RMSE) graph of predictons represent the validation of estimations. On the
other hand, according to the predictions of outputs and measurements, the correlations

xxi



are calculated to check the validity of estimations. As an alternative method, we
employ ANN to train the input data and predict the outputs. The comparison between
the results of ANFIS and ANN shows higher correlation of ANFIS predictions and
given data, which reveals that ANFIS outperforms ANN in prediction of advertising
awareness data.

We finally created a graphical user interface (GUI) to support decision maker. This
decision support system (DSS) equips a database, a model base with ANFIS and ANN
methods, and a GUI. It can train the given data, and estimate the output and find
the errors of estimation. This DSS can also depict the results of ANFIS and ANN
simultaneously and allow the user to compare their prediction ability.
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MARKA İMAJ BİLEŞENLERİNİN REKLAM HATIRLANIRLIĞI ÜZERİNE
ETKİSİNİN BULANIK SİNİR AĞLARI SİSTEMİ İLE MODELLENMESİ

ÖZET

Hemen hemen tüm dünya ve ülkeler çapında şirketler satış hacmini ve karını artırmak
için reklamı kullanmaktadırlar. Bu şirketler tüketicilere ulaşmak ve ürünlerini
veya hizmetlerini duyurmak için milyonlarca dolar para harcamaktadırlar. Şirketler
reklamların değerlendirilmesi sürecinde ve stratejilerinin karşılığını almada büyük
bir çaba gösterirler. Şirketler sadece reklamın duyurulmasından sonraki süreçte
değil, aynı zamanda reklamın oluşturulmasından önceki süreçlerde de değerlendirme
yapmaya ihtiyaçları vardır. Böylelikle şirketler bulanık sistemler veya yapay sinir
ağları gibi yapay zeka araçları ile geleceği tahmin ederek bir adım önde olabilirler.

Bulanık mantık ve bulanık kümelerin ortaya çıkması matematik ve mühendislik
bilimlerinde büyük bir devrim yarattı. Klasik kümelerde sadece sıfır ve bir değerleri
dikkate alınıyor. Halbuki bulanık kümeler de ise sadece 0 ve 1 değerlerini değil,
sıfırla birin arasındaki bütün değerleri göz önünde bulundurularak, her üye için üyelik
derecesi belirleniyor. Bu kümeleri geliştiren bilim insanı, Zadeh, daha sonra bulanık
kümeleri kullanarak dillsel değişkenlerin tanımını gelıştirdi. Bu değişkenler insanların
değerlendirmelerini dilsel bir şekilde sağlamaktadırlar. Bu karar vericilerinin
değerlendirilmelerindeki belirsizliklerle başa çıkılabilir ve pratik karar verme sürecini
güçlendirebilir. Kural tabanlı bulanık sistemler temelde bulanık kümeleri uygularlar
ve IF-THEN kuralları anlaması için girdileri işlerler ve defuzzify çıktıları sağlarlar.

Sinir ağları yapay zekanin hızla büyüyen bir dalıdır ve aynı zamanda, yaygın karmaşık
veri setleri ile başa çıkmak için farklı alanlarda kullanılmaktadır. Yapay sinir
ağları’nda (YSA) tahmin etmek, kümeleme yapmak, sıkıştırma veya filtreleme gibi
yapılar uygulanabilir. YSA tahmin yeteneği karar verme anından daha önce kararları
değerlendirmek için gereklidir. YSA, bugünün çalkantılı pazarında önemli bir ihtiyaç
olan önceden yorumlanmış veya anlamlandırılmış bilgiyi sağlayacaktır.

Bu çalışmada, markaların tanılılırlığını analiz etmek için iyi bilinen bir birleşik
nöro-bulanık bir yöntem ile adaptif bulanık sinir çıkarım sistemini (ANFİS)
öneriyoruz. Reklam verileri yüksek oranda karmaşık ve doğrusal olmayan bir yapıya
sahip olmasına rağmen, ANFİS ile bu yapıdaki girdilerle çıktı(ları) tahmin etmek
gerçekleştirilebilir. Burada, boyut indirgeme yöntemiyle, reklam bilinci marka
imajının 30 değişkenini 2 değişkene düşürüldü. Ardından, adaptif bulanık sinir
çıkarım sistemi, bulanık kurallar oluşturarak ve giriş verileri kullanılarak oluşturduğu
ağı eğitir. ANFIS Bu eğitim yeteneği ile reklam farkındalık çıktılarını tahmin eder. Bu
çalışmada, üç reklam farkındalık çıktıları; yani akla ilk gelen marka (TOP), ses payı
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(SOV), ve spontan araştırılmaktadır.

Adaptif bulanık sinir çıkarım sistemi, tahminini doğrulamak için, verilerin yüzde
30’i rastgele test verisi olarak parçaladık ve yüzde 70 veriyi de eğitim için
kullandık. Tahminlerin kök ortalama kare hata grafikleri kestirimlerin doğrulanmasını
yansıtmaktadır. Öte yandan, çıktıların ve ölçümlerin tahminlerine göre, korelasyonlar
kestirimlerin geçerliliğini kontrol etmek için hesaplandı. Alternatif bir yöntem
olarak, YSA da girdi verilerini eğiterek, çıktıların tahmininde kullandık. ANFIS
ve YSA sonuçları arasındaki karşılaştırmada, ANFIS reklam farkındalık verileri
tahmininde YSAnın geride olduğu ortaya çıkmıştır. Adaptif bulanık sinir çıkarım
sistemi tahminleri verilen verilerin yüksek korelasyonunu göstermektedir.

Sonunda karar vericiyi desteklemek için bir grafik kullanıcı arayüzü oluşturuldu. Bu
karar destek sistemi bir veritabanı, adaptif bulanık sinir çıkarım sistemi ve YSA
yöntemleri ile bir model tabanlı ve bir arayüz olarak tasarlandı. Bu sistemle verilen
verilerin eğitmini, çıktıların tahmini ve tahmin hataları görülebilir. Bu karar destek
sistemde, eş zamanlı olarak adaptif bulanık sinir çıkarım sistemi ve YSA sonuçları
görülebilir ve kullanıcıya tahminlerin değerlerinin karşılaştırılmasına imkan sağlanır.
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1. INTRODUCTION

1.1 Introduction of the Problem

Advertising originates in the history of ancient civilizations such as Romans’ paintings

on the walls to announce gladiator fights, and sales announcements in Greece during

golden age [1]. Nowadays, companies exploit modern tools such as social media

to announce their activities and/or promote their products or services. Advertising

nowadays contains a wide range of contents, from persuading people to purchase

business products to educational messages and informing about healthcare services.

These vast types of ads are transmitted every day in social media, television programs,

streets, etc. and companies are searching for targeted audiences everywhere. So that,

the advent of internet and social media has revolutionized the advertising formation.

This structure of ads is more psychologically professional and more tempting than

predecessors.

On the other hand, high population growth and huge markets like China and India

broaden the advertising audiences. These increase the emergence of various ads,

which are paid hundreds of million dollars to be advertised in different media and

stick their brand image in people’s mind. The huge expenses of advertising and

subsequent financial transactions represent the crucial role of advertising in today’s

marketing management. In this regard, marketers need to plan to advertise their

products and/or services. According to Lee and Johnson [2], in order for advertising

planning, the advertising managers review the marketing strategies to comprehend the

company’s intentions, and then understand the role of advertising in the marketing mix.

Advertisers then should perceive the current situation of the company, target market(s),

short- and long-term marketing objectives, decisions on products’ life cycle, marketing

mix, and their position in the market.

This leads to clearly determine the advertising objectives of the company, and identify

the precision and measurability of advertising. Therefore, advertiser would be able to

1



evaluate advertising success at the end of the advertising campaign, and assess whether

the advertising objectives have been met or not.

1.2 Our Suggestion

Marketers should evaluate the company’s advertising and assess the effects of ads on

people’s mind. The more people remember an ad and the long period of time it lasts in

their minds, the more successful ad has been announced.

Companies usually evaluate their advertising through monetary criteria such as profit,

or sales volume. However, other criteria may better demonstrate the real effect of

advertising on people in long term horizon. For this reason, while the measurement of

people’s perception is difficult, companies attempt to catch brand awareness or product

awareness by questioning individuals.

Since advertising and then evaluation of advertising is a time consuming process,

advertisers need to be one step beyond the trial and error, i.e. they should be able

to predict the effect of a special advertising with particular advertising message. The

prediction ability of artificial intelligence (AI) tools such as fuzzy systems or artificial

neural networks (ANN) can support advertiser. Using recorded advertising data, these

intelligent systems can estimate the effects of different types of advertising. This can

elucidate the invisible side of advertising awareness and empower decision makers

to estimate the consequences of their decisions. In this study, we propose to apply

adaptive neuro-fuzzy inference system (ANFIS), which is a well-known combination

of fuzzy inference systems (FIS) and ANN. ANFIS is an admitted tool to deal with

non-linear and chaotic data, and it is broadly used to predict complex concepts.

1.3 Summary of Future Sections

This thesis is structured as follows: section 2 devotes to the advertising, advertising

awareness and the influence of advertising on the brand image. The history of

advertising and customer relationship, as well as the relevant concepts of advertising

evaluation are presented in this section. In the section 3, the methodologies including

fuzzy sets, fuzzy rules, ANN, and ANFIS will be described. Section 4 contains the

application of the proposed model, details about data. In this section, ANN and

2



ANFIS are compared, and the proposed support system is presented. Using different

measurements of advertising awareness, different estimation of the model, root mean

square error (RMSE), and testing data errors are also provided in section 4. Finally,

section 5 is devoted to the conclusion and suggested future works.

3
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2. ADVERTISING AWARENESS

Advertising is a part of the broad activities of marketing department. It is defined

as “any paid form of non-personal presentation and promotion of ideas, goods, or

services by an identified sponsor” [1] (p.458). Most of the business companies, as

well as not-for-profit organizations, professionals, and social agencies use advertising

to promote their products or services.

According to Kotler and Armstrong [1], there are four main decisions in developing an

advertisement program, namely, setting advertising objectives, setting the advertising

budget, developing advertising strategy, and evaluating advertising campaigns.

Advertising objective refers to a specific communication task to be achieved with

a determined target audience in a determined period of time. Advertisement can

embed different objectives such as information, persuade, and remind. Based on

these objectives, advertising can be classified as informative advertising, persuasive

advertising, and reminder advertising. Considering the advertising objectives, the

budget will be allocated to advertise each product or service. In order to accomplish the

advertising objectives, advertising strategy should be developed. Advertising strategy

deals with two main responsibilities: creating advertising messages and selecting

advertising media. Ads should be created in a way that affect audiences, and should

be transmitted by appropriate media. Finally, the advertisement should be evaluated to

control if the company reach the determined advertising objectives.

Successful developing of advertising program, i.e. setting objective, budget, strategy,

and evaluation of advertising can guarantee advertising awareness by the majority of

target audiences. This can also approach marketing department to the planned goals

through creating an impressive awareness of advertisement followed by a memorable

awareness of product.
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2.1 Brand Image

Brand image is a set of perceptual beliefs about a brand’s attribute, benefit, and attitude

associations, which are frequently seen as the basis for an overall evaluation of, or

attitude toward, the brand [3]. Brand image is a holistic construct formed from a

gestalt of all the brand associations related to the brand. It is different from brand

attitude, which is consumers’ overall evaluation of the brand. However, brand attitude

is conceptualized as just one of the various associations used in the formation of the

brand image. Aaker [4] defines brand equity as a behaviorally oriented construct

influenced by a consumer’s image and attitude of the behavior’s object. As shown in

below, brand image and brand attitude impact brand equity, and brand image consists

of brand associations, brand loyalty, brand awareness, perceived quality, and other

brand assets [3, 4].

Figure 2.1 : Brand associations, brand image, brand attitude, and brand equity.

Considering psychological theories, Kotler and Armstrong [1] stated four main factors

that affect a particular person’s purchase decision including motivation, perception,

learning, and beliefs and attitudes. Motivation points out the need that sufficiently

press the person to buy the product or service and satisfy the need. A motivated person

perceives the process of selection, organizing, and interpreting information to form

a meaning picture of the world. This perception leads to changes in an individual’s

behavior and learn from experiences. Lastly, the learning process terminates to form

beliefs and attitudes.
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Marketers consider the beliefs of people to supply their needed products or services.

They firstly create a brand which is a name, term, sign, symbol, or a combination of

these elements to introduce the product or service [1], and then develop an influential

image of the brand that affects buying behavior. This brand image is introduced by

Ogilvy [5] which considers personalities for the brands that and stick to thm. This

refers to the total personality of a particular brand, rather than any trivial product

difference, which decides its ultimate position in the market.

2.2 Advertising and Brand Image

As mentioned before, most of business companies use advertising to promote their

products or services. As mentioned before, a crucial decision in developing the

advertisement is the evaluation of advertising campaigns. Additionally, according

to Kotler and Armstrong [1], advertising strategy consists of creating message and

selecting appropriate media.

The primary step to create an effective advertising strategy is to prepare a message

strategy. This message is a communication way to consumers, and it should

get consumers to think about or react to the product or company in advertiser’s

determined way [1]. Secondly, selecting advertising media denotes to determining

reach, frequency, and impact of advertisement. The marketing department is then

responsible to choose suitable media types and select specific media vehicles, as well

as media timing. The reaction of people happens only if they believe they will benefit

from the presented product or service. The message of advertisement tends to plain,

straightforward outlines of benefits and positioning points that the advertiser wants to

stress [1].

Since advertising is often the largest single cost in marketing budget, companies

are giving weight to advertising research. Lee and Johnson [2] divided advertising

research into two types: media research and message research. The first one, media

research, addresses the information about the circulation of newspapers and magazines,

and broadcast coverage of television and radio. A variety of resource materials are

available to advertisers for determining the potential audience size for specific media

vehicles.
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The latter, message research, considers the effectiveness of advertising messages

in communicating to people. Media research analyzes how well those messages

influence people’s behavior. Measuring advertising effectiveness and the return

on advertising investment has become a crucial subject for most companies which

are challenging in the current competitive economic environment. In advertising

effectiveness, advertising researchers measure the influencing attitudes, achieving

awareness, conveying copy points, creating emotional responses, and affecting

purchase choices. Accordingly, there are five different forms of responding to ads,

namely, measures of recognition and recall, measures of emotions, measures of

physiological arousal, measures of persuasion, and measures of sales response [2].

2.3 Advertising Awareness Measurement

As a major decision in developing an advertisement program, advertising campaign

should be evaluated by the marketing department. But, since advertising is the

cornerstone of different marketing strategies and is not only the defining element of the

marketing mix, advertising evaluation is a literally difficult and expensive process [6].

Advertising can be evaluated by two main advertising results, the sales and profit

effects, and the communication effects of advertising [1]. Advertisers can measure the

sales and profit effects of advertising by comparing post-advertising sales and profits

with pre-advertising sales and profits. However, it is difficult to find the appropriate

measurement time before, and especially after advertising. This means that advertiser

should estimate the impression period of post-advertising.

On the other hand, after an advertising is run, it can be measured by observation of

consumers’ recall and/or product awareness. Similar to the sales and profit effects

measurement, the effects of pre-advertising and post-advertising communications

will reveal the advertising awareness. This measurement requires the link between

consumer, customer, and public to the marketer. The stream of information can identify

and reveal marketing opportunities, which leads to generating appropriate marketing

actions. Hence, although it is not easy to track the incremental sales associated with

advertising campaigns, marketers have developed some marketing metrics such as top

of mind, share of voice, and spontan, which are described as follows:
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2.3.1 Top of mind

Top of mind or TOM measures the advertising awareness, which represents the first

brand that comes to mind when a customer is asked an unprompted question about a

category. TOM is calculated as the percentage of customers for whom a given brand is

top of mind can be measured [6]. This will represent the influence of the transmitted

advertising, i.e. if an advertising successfully received to audiences, it should stick in

their mind. Thus, they should remember the advertised brand when they are questioned

about the most prominent brand of a particular sector.

2.3.2 Share of voice

Share of voice or SOV is another measurement factor of advertising awareness. SOV

refers to the intensity of advertising for a particular brand compared with all other

brands of a given product. It is generally measured in dollars, and can be calculated at

a company level, brand level, or product level [6, 7].

SOV is the amount of advertising of a company compared to that of its competitors,

i.e. SOV quantifies the advertising presence that a specific brand exploits [6]. Thus,

considering the budget of advertising (BA) and total market advertising (TMA) in

dollars or the number of respondents, the percentage of SOV is calculated as follows:

SOV (%) =
BA($,#)

T MA($,#)
(2.1)

SOV can display the percentage of targeted people who remember the most prosperous

advertising. The more successful and more impressive advertising, the more memorial

and the higher share of voice.

2.3.3 Spontan

Spontan refers to rememberance of a particular brand, i.e. when you ask people about

banking corporations, the percentage of people who mention a particular brand is the

spontan of that brand. The difference between TOM and spontan is that TOM concerns

with the first brand mentioned by the questioned person, but spontan regards the entire

memorized brands either the first or second or even the last.

2.4 Literature Survey
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The major problem with most of real world data and time series is the non-linearity and

complexity of dataset. Compared with statistical analysis like regression, ANN offers

many advantages over these conventional approaches [8]. Artificial neural network

(ANN) is a well-known method to deal with incomplete data, non-linear data and

outliers and analyzing noisy data [8]. This interaction ability of neural network catches

many researchers from different disciplines to apply neural networks. Most of the

previous studies have been applied ANFIS and ANN from water management [9–11]

to medical applications [12].

ANFIS is also broadly applied in management from stock market prediction [13–21] to

sales forecasting [22–27]. In civil management and water management, Karimnezhad,

Etemad-Shahidi, and Mousavi [28] applied ANFIS and coastal engineering manual

(CEM) for wave prediction. Comparing the results, the prediction capability of ANFIS

is superior to CEM’s. Mahjoobi et al. [29] compared ANN, fuzzy inference system

(FIS) and ANFIS in wave prediction of Lake Ontario, and found similar errors in

different methods, but the results of ANFIS were more accurate than the results of

FIS and ANN. Similarly, Malekmohamadi et al. [30] applied support Vector Machine

(SVM), Bayesian Networks (BN), ANN, and Adaptive Neuro-Fuzzy Inference System

(ANFIS) to evaluate the wave height using wind data, and found the best results in

ANN estimations. In order to estimate daily evaporation of south western Iran, Shiri

and Kisi [9] applied genetic algorithm (GA) using daily climate variables, i.e. air

temperature, sunshine hours, wind speed, and relative humidity. The performance of

their model was measured by correlation coefficient, RMSE, coefficient of residual

mass, and scattered index. They therefore assessed the ability of GA model by

neuro-fuzzy and artificial neural networks, which GA outperformed both of these

methods.

Shiri et al. [10] developed an ANFIS model to estimate the reference evapotranspi-

ration using data from Spanish humid (Basque Country) and non-humid (Valencia)

regions to train the model, and used Iranian humid and non-humid stations to test the

model. In order to compare ANFIS and ANN, Khaki, Yusoff, and Islami [11] evaluated

the water quality parameters from five sampling sattions in Malasia. The performance

of both methods was measured by the correlation coefficient and mean squared error

(MSE), and finally ANFIS had lower computational complexities and trained faster
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that ANN. In another study, sediment transport was analyzed using ANFIS and ANN

[31]. Based on the results of R squared and RMSE, ANFIS outperformed ANN in

most of the cases.

There are many applications of ANFIS in prediction of stock markets all over the

world. By integrating artificial neural network and fuzzy neural network, Kuo, Chen,

and Hwang [13] developed a decision support system for stock trading. Atsalakis

and Valavanis [14] employed ANFIS to forecast short-term trends of Athens and New

York stock markets. They chose Gaussian-2 shaped membership functions over bell

shaped Gaussian and triangular ones to fuzzify the system inputs, and found the lowest

RMSE. Esfahanipour and Aghamiri [15] applied neuro-fuzzy inference adopted on a

Tagaki-Sugeno-Kang to predict stock price and tested on the Tehran Stock Exchange

Index (TEPIX). They have used fuzzy C-Mean clustering method to identify the

number of fuzzy rules.

Using ANFIS, Boyacioglu and Avci [16] predicted stock market return of Istanbul

Stock Exchange (ISE). Ansari et al. [17] used ANFIS to predict NASDAQ stock

market index. This neuro-fuzzy system implemented hybrid least-square method and

the Back-propagation gradient descent methods to train the fuzzy interface system

(FIS). Esfahanipour and Mardani [18] predicted Tehran stock exchange price index

using multi-layer perceptron ANN and compared with ANFIS and fuzzy C-Means.

Based on the prediction results, ANFIS outperformed ANN model of multi-layer

perceptron. Guresen, Kayakutlu, and Daim [19] applied multi-layer perceptron (MLP),

dynamic artificial neural network (DAN2), and also hybrid neural networks which

use generalized autoregressive conditional heteroscedasticity (GARCH) to predict

NASDAQ Stock Exchange index. Svalina et al. [20] applied neuro-fuzzy inference

system to predict Zagreb Stock Exchange Crobex index. And, recently, Qiu, Song,

and Akagi [21] used ANN to predict the return of the Japanese Nikkei 225 index using

GA and simulated annealing to improve the prediction accuracy of ANN.

Kuo and Xue [22] and Kuo and Xue [23] implemented a decision support system and

employed fuzzy ANN and ANN to forecast sales volume. Using fuzzy Delphi method

to collect the fuzzy inputs and outputs, fuzzy IF-THEN rules, achieved from marketing

experts, were trained and then integrated with the forecast from ANN. Kuo [24]

proposed a fuzzy ANN to train fuzzy IF-THEN rules to forecast sales data. This system
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were initialized with generated weights by GA. Then, based on this integrated model,

Kuo, Chen, and Hwang [13] developed a decision support system for stock trading.

Kuo, Wu, and Wang [25], then, boosted the integrated ANN and fuzzy ANN system by

adding fuzzy weight elimination. Efendigil, Onut, and Kahraman [26] employed ANN

and ANFIS to forecast demand of a multi-level supply chain, and the results of ANFIS

were closer to the actual values. Dwivedi, Niranjan, and Sahu [27] applied ANFIS and

ANN to forecast the automobile sales, which resulted ANFIS outperformance.

ANFIS is also widely used in different branches of management sciences. DeTienne

and DeTienne [8] believed that marketing studies investigating customer preferences

and customer satisfaction could benefit from the ability of ANNs to discover

relationships and make predictions using inputs that can’t be organized into a

pre-specified model. In this regard, to estimate the value innovation and the effects

of quality of new product development (NPD) process on NPD performance, Ho

and Tsai [32] compared the performance of ANFIS and structural equation modeling

(SEM). The results cleared that ANFIS has superior forecasting ability to SEM, due

to effective explanation of nonlinear relationships between NPD process quality and

NPD performance. In churn management, Karahoca and Karahoca [33] investigated

the global service and mobile communication (GSM). They firstly clustered input

data by x-means and fuzzy C-Means, then, used ANFIS for prediction. Lin et

al. [34] states that forecasting methods are classified into two groups: linear and

nonlinear. The first one, linear forecasting methods, such as least squares analysis or

correlation methods are useful, but sometimes fail to forecast nonlinear time series.

However, nonlinear forecasting models such as ANFIS, Bayesian model, support

vector regression, etc. provide effective performance in nonlinear situation. Lin et

al. also provide a geographic information system (GIS) to facilitate decision making

process by comparing different performance.

Although there are various studies which considered neural network to investigate

various managerial problems, neural network rarely applied in marketing, especially

advertising evaluation. Using neural network, TOM and in mind (IM) factors are

predicted to measure the effect of advertising on the Swedish car industry including

9 well-known brands [35]. Johansson et al. [36] also used neural network and

rule extraction to estimate TOM and IM of Swedish travel companies. But, to our
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knowledge, there are no more similar studies which employed ANFIS or ANN in

advertising evaluation.

As you see in literatures above, ANFIS or ANN or other estimation methods are not

absolutely superior to each other. However, each of these methods outperform the

other in different studies. On the other hand, as mentioned in Section 2.3., advertising

is the cornerstone of marketing strategies, and implies the difficulty of advertising

evaluation [6]. This demonstrate the significance and complexity of the elements of

advertising evaluation, which can unveil non-linear relationships between the elements.

Consequently, according to the abilities of AI methods such as fuzzy systems or ANN

in dealing with non-linear and complex data, these methods can provide practical and

useful outcomes in advertising evaluation problems. In this study, we apply ANFIS

in advertising assessment and estimate the future brand awareness of considered

companies using the prediction ability of ANFIS method. We then establish ANN to

predict the advertising awareness, and compare the estimations of ANFIS and ANN.
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3. METHODOLOGY

In this chapter, fuzzy sets, fuzzy systems, artificial neural networks, and artificial

neuro-fuzzy inference systems (ANFIS) method are described shortly, as the

preliminaries for the applications in the next section.

3.1 Fuzzy Sets

Famous mathematician, Wilhelm Leibniz, believed that “if we could find characters

or signs appropriate for expressing all our thoughts as definitely and as exactly as

arithmetic expresses numbers or geometric analysis expresses lines, we could in all

subjects, in so far as they are amenable to reasoning, accomplish what is done in

arithmetic and geometry.” Ross [37] states that the most powerful form of conveying

information may be natural language that humans possess for solving or reasoning

of any given problem. By rising of the utility of fuzzy logic, Leibniz’s belief and

the power of human expression became realized in today’s mathematical paradigms.

The need for expressing linguistic variables using the precepts of mathematics is quite

well established. Zadeh [38] defines a linguistic variable as a variable which values

are words or sentences in a natural or artificial language. With these definitions and

foundations, we are now in a position to establish a formal model of linguistics using

fuzzy sets.

Ross [37] defined a specific atomic term in the universe of natural language, X , as

element α , and we define a fuzzy set Ã in the universe of interpretations, or meanings,

Y , as a specific meaning for the term α . Then, natural language can be expressed as a

mapping M̃ from a set of atomic terms in X to a corresponding set of interpretations

defined on universe Y . Each atomic term α in X corresponds to a fuzzy set Ã in Y ,

which is the “interpretation” of α . This mapping, which can be denoted M̃(α, Ã), is

shown schematically in Figure 3.1. The fuzzy set Ã represents the fuzziness in the

mapping between an atomic term and its interpretation, and can be denoted by the
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membership function, µ
M̃
(α,y) or more simply by

µ
M̃
(α,y) = µ

M̃
(y) (3.1)

Figure 3.1 : Mapping of a linguistic atom α to a cognitive interpretation Ã.

3.1.1 Fuzzy Rules

Each organization exploits experts and their latent knowledge to remain in the business.

Negnevisky [39] defined knowledge as “a theoretical or practical understanding of

a subject or a domain”. The thinking power of human is a mental process and the

outcome is subjective. The thoughts of an expert are also internal perceptions, which

are difficult to be expressed in the form of algorithms [39].

In the field of artificial intelligence (machine intelligence) there are various ways to

represent knowledge. Perhaps the most common way to represent human knowledge

is to form it into natural language expressions of the type

IF premise (antecedent), THEN conclusion (consequent)

Expression above is called the IF–THEN rule-based form, which is genrally referred

to as the deductive form. It typically expresses an inference such that if we know a fact

(premise, hypothesis, antecedent), then we can infer, or derive, another fact called

a conclusion (consequent). This form of knowledge representation, characterized

as shallow knowledge, is quite appropriate in the context of linguistics because

it expresses human empirical and heuristic knowledge in our own language of

communication.

These rules are based on natural language representations and models, which are

themselves based on fuzzy sets and fuzzy logic. The fuzzy level of understanding
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and describing a complex system is expressed in the form of a set of restrictions on

the output based on certain conditions of the input. Conjunctions or disjunctions like

“and”, “or”, and/or “else” are the restrictions of rules that connect different linguistic

expressions to create more complex premise. They are are generally modeled by fuzzy

sets and relations. These advanced version of IF-THEN rules can be equipped multiple

antecedents and/or uncommonly multiple consequents. These antecedents are joined

by AND (conjunction), OR (disjunction) or a combination of both [39].

IF <antecedent 1> AND <antecedent 2> AND < antecedent 3> THEN <consequent>

IF <antecedent 1> OR <antecedent 2> OR <antecedent 3> THEN <consequent>

Since most of the rule-based systems deal with fuzzy rules, multiple fuzzy rules should

be aggregated. This process is known as the aggregation of fuzzy rules, and two regular

aggregations are as follows [40]:

Conjunctive system of rules like y = y1 and y2 and ... and yr which is defined by the

membership function (MF) as follows:

µy(y) = min(µy1(y),µy2(y), ...,µyn(y)) (3.2)

Disjunctive system of rulese like y = y1 or y2 or ... or yr which is is defined by MFs as

follows:

µy(y) = max(µy1(y),µy2(y), ...,µyn(y)) (3.3)

3.1.2 Artificial Neural Network

Artificial neural network (ANN) is an attempt of modeling human cognitive

system. ANN is a technology that has been mainly used for prediction, clustering,

classification, and alerting to abnormal patterns [41]. ANNs can identify patterns

between the dependent and independent variables in datasets. This pattern recognition

as well as optimization of large-scale problems are the principal strengths of ANNs

[8,42]. ANNs can deal effectively with data discontinuities, outliers, missing data and

even nonlinear transformations.

uk =
p

∑
j=1

wk jx j ∀ j = 1,2, ..., p (3.4)

yk = ϕ(uk−θ j) (3.5)
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where x represents the input signals and w represents the synaptic weights of neuron k.

yk is the output signal of the neuron, and ϕ is the activation function. uk is the linear

combiner output and θ j denotes the threshold [41].

Figure 3.2 : Non-linear model of a neuron.

In order to introduce the non-linearity characteristics into the ANN model, a transfer

function is used. Activation function can be either linear or nonlinear function, and

limits the value of output neuron between 0 and 1, or between -1 and 1. Linear

activation function is like a product of each layer’s weight matrices. Sigmoid or

logistic function is the most chosen function for back-propagation. It is able to help the

generalization of learning characteristics to yield models with improved accuracy [43].

ϕ(x) =
1

1+ e−x (3.6)

Figure 3.3 : The ANN structure.

There are usually a number of hidden layers between these two layers. The hidden

layer of an ANN model acts as a black box to link the relationship between input and

output [43]. According to some literature studies, the maximum number of hidden

layer nodes can be (1) 2n + 1, where n is the number of nodes in the input layer, (2)
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75% of the quantity of input nodes, or (3) 50% of the quantity of input and output

nodes [44–46].

The main advantage of ANN is the learning capability using previous recorded

data. Learning capability of ANN is in two ways supervised and unsupervised

learning. Supervised learning is used when the dataset has a target output value.

Back-propagation is the most applied method to adjust the weights in supervised

training of ANN. The concept of back-propagation learning is a simple learning

method, i.e. the subtraction of the actual and target outputs provides the error through

backward propagation, and the weight values are adjusted to minimize the value of

error.

Accordingly, unsupervised learning is used when the training dataset lacks target

output values. Unsupervised training makes weight adjustments with respect to

correlations in the input variables, which are really both input and target variables [47].

Because unsupervised networks focus only on the input values in a data-set, the output

layer is not used in training process. Yet output node is only used during interpretation

of the results [48].

There are three adjusting factors to control the learning rate of ANN, namely, learning

rate coefficient, momentum, and the exit conditions. Learning coefficient manages

the rate of learning by changing the weights over time. Momentom factor controls

how much iteration an error adjustment persists [26]. High momentum cripples

network adaptability. On the other hand, low momentum causes weight oscillation

and instability, preventing the learning process of network. Momentum factor is kept

close to and less than one, in order to reach the stable backpropagation. DeTienne

and DeTienne [8] believe that a small momentum factor is optimum during training,

whereas it should be larger toward the end of training. Exit condition also points out

the stopping rule of ANN to control the termination of the training [43].

The training process will stop when all patterns are classified correctly and selected a

range of accuracy. This is called over-fitting or over-training. As mentioned above,

the objective function of ANN is the minimization of error. The squared error is

represented by and calculated as follows:

E = ∑(tp− yp)
2 (3.7)
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To generalize the NN architecture, a validation data set is applied to check the degree

of generalization of the trained model and is evaluated whether the output is close

enough for an input [43].

3.1.3 Adaptive Neuro-Fuzzy Inference System

An inference system employing fuzzy if-then rules can model the human knowledge

in the form of qualitative inputs. ANFIS can conduct reasoning process without

employing precise quantitative analyses [49]. Therefore, while input-output

relationships are not explicitly given in ANN, these relationships are represented

explicitly in the form of if-then rules in neuro-fuzzy systems.

Neuro-fuzzy modelling has been recognized as a powerful prediction tool, due to

combining quantitative information, like data, and qualitative information, like expert’s

knowledge, to facilitate the effective development of models. Hence, on the contrary of

some complicated methods which are notoriously recognized as “black box” methods

like neural networks, most of the neuro-fuzzy models can be better used to explain

solutions to users [50, 51]. Assume the fuzzy inference system has two inputs x and y

and one output z, and rule base has two fuzzy rules of Takagi and Sugeno’s type [52].

If x is A1 and y is B1, then f1 = p1x+q1y+ r1

If x is A2 and y is B2, then f2 = p2x+q2y+ r2

where Ai and Bi are the fuzzy sets, fi is the output set within the fuzzy region specified

by the fuzzy rule pi and qi and ri are the design parameters that are determined during

the training process.

ANFIS has a five layer feed forward neural network. The node functions in the same

layer are of the same function family as described below [49]:

Layer 1. Every node i in this layer is a square node with a node function

O1
i = µAi

(x) i = 1,2 (3.8)

where x denotes the input to node i, and Ai is the linguistic label like small, large,

etc. Oi is the membership function of Ai and it specifies the degree to which the given
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x satisfies the quantifier Ai. The membership function can be triangular, trapezoidal,

bell-shaped, Gaussian, etc.

O1
i = µAi

(x) =
1

1+
[(x−ci

ai

)2
]bi

(3.9)

where ai,bi,ci is the parameter set of the bell-shaped membership function.

Layer 2. Every node in this layer is a circle node labeled II which multiplies the

incoming signals and sends the product out. For instance,

O2
i = ωi = µAi

(x)×µBi
(y) i = 1,2 (3.10)

Each node output represents the firing strength of a rule.

Layer 3. Every node in this layer calculates the ratio of the ith rule’s firing strength to

the sum of all rules’ firing strengths:

O3
i = ω̃i =

ωi
ω1 +ω2

i = 1,2 (3.11)

For convenience, the output of this layer is called normalized firing strengths.

Layer 4. Every node i in this layer is a square node with a node function

O4
i = ω̃i fi = ω̃(pix+qiy+ ri) (3.12)

where pi,qi,ri is the parameter set which are referred to as consequent parameters.

Layer 5. The single node of this layer calculates the overall output as a summation of

all incoming signals as follows:

O5
i = ∑ ω̃i fi =

∑i ωi fi

∑i ωi
(3.13)

In ANFIS structure, the premise and consequent parameters should be noted as

important factors for the learning algorithm in which each parameter is utilized to

calculate the output data of the training data. The premise part of a rule defines a
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subspace, while the consequent part specifies the output within this fuzzy subspace

[49].

It is observed that given the values of premise parameters, the overall output can be

expressed as linear combinations of the consequent parameters. More precisely, the

output of the ANFIS model can be written as in Jang [49]:

f =
ω1

ω1 +ω2
f1 +

ω2
ω1 +ω2

f2 (3.14)

f = ω̃1 f1 + ω̃2 f2 (3.15)

Using fuzzy if-then rules and Eq. (3.13), Eq. (3.14) will be yield

f = ω̃1(p1x+q1y+ r1)+ ω̃2(p2x+q2y+ r2) (3.16)

After arrangement, Eq. (3.17) equals

f = (ω̃1x)p1 +(ω̃1y)q1 +(ω̃1)r1 +(ω̃2x)p2 +(ω̃2y)q2 +(ω̃2)r2 (3.17)

The hybrid algorithm used in ANFIS structure consists of the least squares method and

the back-propagation gradient descent method for training FIS membership function

parameters to emulate a given training data [53].

The hybrid learning algorithm of ANFIS has both forward and backward pass.

The forward pass uses the least squares method to find the optimal parameters of

consequent with fixed premise parameters. Then, backward pass applies gradient

descent method to adjust optimally the parameters of premise corresponding to the

fuzzy sets in the input domain [26].

The output of ANFIS is calculated by employing the consequent parameters found in

the forward pass. The output error is used to adapt the premise parameters by means

of a standard back-propagation algorithm.

One of the most commonly used approaches to validate neural networks is data

splitting, i.e. data should be divided into three sets: train, test, and check. This method
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usually splits the dataset into 70%, 15%, and 15% sub-sets randomly, which form the

training data set, testing data set, and checking set, respectively.
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4. MODEL ESTIMATIONS

4.1 Proposed Model

In this study, we applied ANFIS to evaluate the advertising awareness data of major

Turkish companies from different sectors. As discussed in section 2.3, we considered

TOM, SOV, and spontan as the advertising awareness metrics, and predict their future

values using AI tools.

4.2 Data and Application

The dataset consists of the results of a field study on advertising awareness, which

is gathered during 21 months, from the January 2014 to September 2015. The

questionnaire covered 30 questions about advertising effects, which are presented

in Table A.1 in Appendix A.3. The questions reveal people’s awareness on the

advertising of 15 reputable Turkish brands, which cannot be mentioned here because

of confidentiality of their advertising information.

Table 4.1 : Kaiser-Meyer-Olkin (KMO) and Bartlett’s test.

KMO Measure of Sampling Adequacy. 0.979
Bartlett’s Test of Sphericity Approx. Chi-Square 13665.883

df 435
Sig. 0.000
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Using the questionnaire results as well as gross rating point (GRP), i.e. the advertising

costs of a certain company in particular period of time, we formed the input set of

ANFIS consisting 31 elements. TOM, SOV, and Spontan were measured, and we

utilized them as three different outputs of ANFIS. Since running of ANFIS with 31

input variables is almost impossible, we applied PCA which its results are presented

in Tables 4.1 and 4.2.

As you see in Table 4.1, KMO measure of sampling adequacy is 0.979 which is greater

than 0.9, so the sample size is marvelous. Since Bartlett’s test of Sphericity is 0.000,

which is less than 0.005, null hypothesis is rejected and correlation matrix is not

identity matrix, so there would be correlations between the variables. As represented

in Table 4.2, two components reach eigenvalues greater than 1, and can explain more

than 80 percent of total variance, which is a very good result. Consequently, PCA

decreased the number of input variables from 30 to 2. We used these two components

along with GRP as the inputs of ANFIS, and as mentioned before, considered TOM,

SOV, and Spontan variables as output, separately.

Using these input and output variables, neuro-fuzzy method applied to find the

least test error to find the most appropriate fuzzy MF and the number of MFs in

each fuzzy envelope. Considered fuzzy MFs include triangular-shaped-built-in MF

(triMF), trapezoidal-shaped-built-in MF (trapMF), generalized bell-shaped built-in

MF (gbellMF), and gaussian curve built-in MF (gaussMF), with 3, 5, and 7 MFs.

Tables 4.3, 4.4, and 4.5 represent the errors of neuro-fuzzy predictions for all data,

companies which produce fast moving consumer goods (FMCG), and non-FMCG

datasets, respectively.

Since the data of homogeneous companies can be predicted properly, we classified

the companies and their products into fast moving cosumer goods (FMCG) and

non-FMCG. Tables 4.4 and 4.5 also present the errors of neuro-fuzzy predictions of

FMCG and non-FMCG datasets, respectively.

As shown in Table 4.3, considering all data, the minimum test errors are 0.042, 0.037,

and 0.022 for TOM, SOV, and spontan, respectively. So, the first two ones are bell

MFs and the last one is a trapezoidal MF, all with 3 functions. According to Table

4.4, the minimum test errors of ANFIS using FMCG dataset are 0.048, 0.040, and
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Table 4.3 : Training and test errors using all data.

Output Type Constant Linear
MF Type Number of MFs Train Error Test Error Train Error Test Error

3 0.029 0.080 0.027 0.413
triMF 5 0.027 0.08 0.239 12.051

7 0.024 0.392 0.011 0.08
3 0.03 0.063 0.027 0.093

trapMF 5 0.027 0.055 0.024 0.416
TOM 7 0.024 0.07 0.014 0.401

3 0.03 0.042 0.027 0.934
gbellMF 5 0.025 2.565 0.226 575.706

7 0.02 0.545 0.015 592.89
3 0.029 0.048 0.026 0.239

gaussMF 5 0.026 0.509 0.264 531.861
7 0.019 2.137 0.009 527.948
3 0.016 0.042 0.014 0.451

triMF 5 0.01 0.88 0.007 4.633
7 0.005 0.191 0.003 1.964
3 0.026 0.04 0.012 0.101

trapMF 5 0.017 0.100 0.011 0.064
SOV 7 0.013 0.055 0.003 0.24

3 0.018 0.037 0.01 2.198
gbellMF 5 0.013 0.385 0.202 93.031

7 0.007 0.54 0.108 249.843
3 0.017 0.043 0.01 0.658

gaussMF 5 0.0108 0.149 0.019 332.793
7 0.006 0.209 0.0088 110.96
3 0.012 0.033 0.009 0.170

triMF 5 0.008 0.052 0.003 29.478
7 0.005 0.070 0.0021 7.685
3 0.013 0.022 0.010 0.033

trapMF 5 0.010 0.037 0.0077 0.102
Spontan 7 0.008 0.030 0.003 0.072

3 0.013 0.023 0.008 0.762
gbellMF 5 0.007 0.356 0.075 129.249

7 0.005 0.330 0.002 50.583
3 0.012 0.028 0.007 0.503

gaussMF 5 0.007 0.319 0.042 75.396
7 0.005 0.203 0.0015 49.550

0.026 for TOM, SOV, and spontan, respectively. Accordingly, TOM will be estimated

by bell-shaped MF, as well as SOV and spontan should be predicted by a trapezoidal

MF. And all of these MFs should apply 3 functions. Similarly, based on the Table

4.5, using non-FMCG dataset, the minimum test errors of TOM, SOV, and spontan are

0.037, 0.038 and 0.021, respectively. All the outputs should be predicted by trapezoidal

MFs with 3 functions, for TOM, SOV, and spontan, respectively.
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Table 4.4 : Training and test errors using FMCG data.

Output Type Constant Linear
MF Type Number of MFs Train Error Test Error Train Error Test Error

3 0.022 0.064 0.016 2.451
triMF 5 0.016 0.088 0.01 3.116

7 0.009 1.063 0.000 8.033
3 0.024 0.049 0.017 0.086

trapMF 5 0.017 0.073 0.009 0.381
TOM 7 0.012 2.559 0.000 3.217

3 0.02 0.048 0.010 3.325
gbellMF 5 0.011 0.101 0.155 444.877

7 0.005 0.801 0.009 12.874
3 0.02 0.053 0.011 11.652

gaussMF 5 0.01 0.695 0.71 1858.194
7 0.006 0.342 0.002 32.493
3 0.019 0.0409 0.017 5.921

triMF 5 0.011 0.322 0.002 7.18
7 0.004 0.474 0.000 9.035
3 0.03 0.0400 0.010 0.1000

trapMF 5 0.019 0.102 0.003 0.157
SOV 7 0.016 0.086 0.000 10.031

3 0.016 0.165 0.007 3.885
gbellMF 5 0.009 1.166 0.093 462.852

7 0.004 0.177 0.002 38.944
3 0.018 0.277 0.009 17.336

gaussMF 5 0.008 1.320 0.061 260.809
7 0.002 0.227 0.000 15.695
3 0.018 0.038 0.017 3.948

triMF 5 0.015 0.212 0.007 23.690
7 0.009 0.300 0.001 27.465
3 0.018 0.026 0.015 0.054

trapMF 5 0.017 0.038 0.007 0.234
Spontan 7 0.014 2.525 0.000 2.180

3 0.015 0.047 0.012 1.432
gbellMF 5 0.008 0.681 0.475 537.839

7 0.006 0.459 0.003 14.329
3 0.016 0.089 0.011 5.198

gaussMF 5 0.010 0.925 0.109 422.508
7 0.002 0.481 0.000 5.733

Table 4.6 summarizes the results of Tables 4.3, 4.4, and 4.5, and represents the

appropriate type of fuzzy MFs and the number of them for each output.

As written in Table 4.6, in order to estimate TOM by using all data, the triple

bell-shaped MFs of input variables factor1, factor2, and GRP are respectively depicted

in Figures 4.1(a), 4.1(b), and 4.1(c). As mentioned before, there are three bell-shaped

MFs in each fuzzy envelope, which stand for Low, Medium, and High linguistic
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Table 4.5 : Training and test errors using non-FMCG data.

Output Type Constant Linear
MF Type Number of MFs Train Error Test Error Train Error Test Error

3 0.026 0.048 0.019 11.516
triMF 5 0.017 1.302 0.006 98.857

7 0.006 0.571 0.001 29.329
3 0.025 0.037 0.020 82.324

trapMF 5 0.022 0.049 0.006 1.376
TOM 7 0.015 0.467 0.000 0.781

3 0.023 0.391 0.016 14.402
gbellMF 5 0.017 2.106 0.188 525.787

7 0.006 0.596 0.002 17.558
3 0.024 1.419 0.015 72.188

gaussMF 5 0.016 0.907 0.049 252.079
7 0.006 0.521 0.001 19.876
3 0.006 0.164 0.004 2.485

triMF 5 0.003 0.294 0.0004 7.693
7 0.001 0.186 0.000 0.697
3 0.010 0.038 0.004 0.156

trapMF 5 0.006 0.356 0.0001 0.159
SOV 7 0.002 0.070 0.000 0.528

3 0.005 0.150 0.003 2.675
gbellMF 5 0.002 0.171 0.023 21.257

7 0.0005 0.153 0.0001 1.669
3 0.0006 0.040 0.002 3.636

gaussMF 5 0.001 0.205 0.004 16.426
7 0.0007 0.173 0.0001 0.692
3 0.014 0.11 0.011 3.006

triMF 5 0.010 0.355 0.006 185.786
7 0.005 0.426 0.0005 18.616
3 0.015 0.021 0.011 39.242

trapMF 5 0.011 0.106 0.005 0.299
Spontan 7 0.010 0.185 0.0008 0.675

3 0.014 0.391 0.010 46.329
gbellMF 5 0.007 0.371 0.189 273.569

7 0.005 0.162 0.002 17.426
3 0.014 0.044 0.009 19.416

gaussMF 5 0.008 0.567 0.073 320.719
7 0.004 0.227 0.002 16.496

Table 4.6 : Type and number of fuzzy MFs.

TOM SOV Spontan
All Data Bell, 3, Constant Bell, 3, Constant Trapezoidal, 3, Constant
FMCG Bell, 3, Constant Trapezoidal, 3, Constant Trapezoidal, 3, Constant

Non-FMCG Trapezoidal, 3, Constant Trapezoidal, 3, Constant Trapezoidal, 3, Constant

variables. For example, based on Figure 4.1(c), the left and right functions represent

low and high GRP, as well as the middle function that graphs the medium GRP. Other
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MFs of TOM, SOV, and spontan outputs, which are predicted by all data, FMCG data,

and non-FMCG data, are attached to the Appendix A.2.

Figure 4.1 : MF of input variables for TOM estimation using all data: (a)Factor1.
(b)Factor2. (c)GRP.

As mentioned before, ANFIS method estimates the outputs. The correlation between

estimated and previously measured outputs are presented in Table 4.7.

There are 15 reputable Turkish companies which their brands are not mentioned here

due to confidentiality of their advertising data. Here, these companies are named A to

O. All data means data of all companies are pooled and analyzed together. FMCG or
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Table 4.7 : Correaltion of ANFIS estimations and measured outputs.

TOM SOV Spontan
All Data 0.873 0.985 0.762
FMCG 0.983 0.975 0.848

Non-FMCG 0.795 0.990 0.820
A 0.272 0.849 0.564
B 0.545 0.963 0.552
C 0.582 0.969 0.589
D -0.020 0.684 0.404
E 0.711 0.998 0.519
F 0.466 0.944 0.739
G 0.599 0.525 0.584
H 0.182 0.972 0.382
I 0.603 0.912 0.698
J 0.511 0.589 0.847
K 0.122 0.847 0.391
L 0.578 0.980 0.850
M 0.632 0.996 0.725
N 0.998 0.999 0.987
O 0.457 0.982 0.683

fast moving consumer goods refer to the producers of fast moving consumer goods,

and FMCG row are the estimations of pooled data of 7 FMCG companies. Similarly,

non-FMCG indicates companies which their products or services are not fast moving

consumer goods, and remained 8 companies are non-FMCG, and their estimations are

presented. Other alphabetic rows also represent the correlation of the estimation and

measured data of each company, separately.

Using the input data and each output, we have depicted the estimations of ANFIS and

measured values of TOM, SOV, and spontan, as well as their correlations in Figures

4.2, 4.3, and 4.4, respectively. In these figures, (a) shows the correlation values of

companies and (b) depicts the scatter plots of predictions. Based on correlations and

visible linearity scatter plots, the estimation of SOV is marvellous, and estimations of

TOM and spontan are very good. In Table 4.7, the correlation values of TOM, SOV,

and spontan using all data are 0.873, 0.985, and 0.762, respectively. These values also

represent the thta the estimation of SOV is superior to TOM and spontan.

In order to validate the prediction of ANFIS, dataset split to 70 percent of data as

training data and 30 percent as testing data. Using these trainng and testing data,

RMSE of test data for TOM, SOV, and spontan are shown in Figures 4.5(a), 4.5(b), and
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Figure 4.2 : TOM and estimated TOM using all data: (a)Correlations. (b)Scatter plot.

Figure 4.3 : SOV and estimated SOV using all data: (a)Correlations. (b)Scatter plot.
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Figure 4.4 : Spontan and estimated Spontan using all data: (a)Correlations.
(b)Scatter plot.

4.5(c), respectively. As shown below, using appropriate numbers of epochs, RMSE is

decreasing in all of them.

Figure 4.5 : RMSE of test data using all data: (a)TOM. (b)SOV. (c)Spontan.
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Figure 4.6 : TOM and estimated TOM using FMCG data: (a)Correlations. (b)Scatter.

Figure 4.7 : SOV and estimated SOV using FMCG data: (a)Correlations. (b)Scatter
plot.

Using FMCG data, the estimation of ANFIS and measured values of TOM, SOV,

and sponton, as well as their correlations are displaied in Figures 4.6, 4.7, and 4.8,

respectively. The correlations between measured and estimated TOM, SOV, and

spontan are 0.983, 0.975, and 0.848, respectively. Based on the linearity of scatter
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plots and R values of graphs below, the estimation of TOM and SOV are marvellous,

and estimations of spontan is good.

Figure 4.8 : Spontan and estimated Spontan using FMCG data: (a)Correlations.
(b)Scatter plot.

Figure 4.9 : RMSE of test data using FMCG data: (a)TOM. (b)SOV. (c)Spontan.
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The RMSE graphs of testing data using FMCG dataset for TOM, SOV, and spontan

are shown in Figure 4.9(a), 4.9(b), and 4.9(c). As training goes on, RMSE of TOM

and SOV are decresing, but RMSE of spontan shows increasing.
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The estimations of ANFIS and measured data of TOM, SOV, and spontan using

non-FMCG dataset are presented in Figures 4.10, 4.11, and 4.12, respectively. As

written in Table 4.7, the correlation of TOM, SOV, and spontan using non-FMCG are

0.795, 0.0.990, and 0.820, respectively. These values reveal that SOV and estimation

of SOV are highly correlated. Figure 4.11 also shows that SOV possesses the most

linearity, followed by TOM and spontan.

Figure 4.10 : TOM and estimated TOM using non-FMCG data: (a)Correlations.
(b)Scatter plot.
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Figure 4.11 : SOV and estimated SOV using non-FMCG data: (a)Correlations.
(b)Scatter plot.

Figure 4.12 : Spontan and estimated Spontan using non-FMCG data: (a)Correlations.
(b)Scatter plot.
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Figure 4.13 : RMSE of test data using non-FMCG data: (a)TOM. (b)SOV.
(c)Spontan.

The estimations of ANFIS and measured output data, as well as correlations of

company E, which is a FMCG company, are provided in Figures 4.14, 4.15, and

4.16 for TOM, SOV, and spontan, respectively. As shown in these figures and R2

values written on the figures, the measurement and estimation of SOV are highly

correlated, followed by TOM and spontan are not. Therefore, although the pooled data

of all companies as well as the pooled data of FMCG companies are highly correlated

with ANFIS estimations, the measured and estimated data of company E as a FMCG

company are not highly correlated.

Figure 4.14 : TOM and estimated TOM of company E.

Figure 4.15 : SOV and estimated SOV of company E.
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Figure 4.16 : Spontan and estimated spontan of company E.

Company B is a non-FMCG, and the TOM, SOV, and spontan graphs of ANFIS

estimations and previously measured data of this company are depicted in Figures

4.17, 4.18, and 4.19, respectively. As represented below, the data of TOM and spontan

are scattered and their R2 values are 0.297 and 0.304, which are small. However, SOV

data are linear and its R2 is 0.927, which is close to 1.

Similar graphs of other FMCG and non-FMCG companies are added to the Appendix

A.1.

Figure 4.17 : TOM and estimated TOM of company B.

Figure 4.18 : SOV and estimated SOV of company B.
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Figure 4.19 : Spontan and estimated spontan of company B.

4.3 Comparing ANFIS and ANN

In order to investiagate the estimation power of ANFIS, we applied neural network

and compared the results of both methods. Similar to previous analyses, using all data,

FMCG and non-FMCG data, Figures 4.20, 4.21, and 4.22 represent the trained values

of ANFIS, ANN, and measured data by green dashed, red dot dashed, and bold black

lines, respectively. To reach a fair comparison, we considered similar parameters for

ANFIS and ANN, i.e. the epochs and the percentage of test data were the same in both

methods. In addition, we inserted different numbers of neurons of hidden layer and

found 10 as the best number with the least training and test error.

During the prediction process to obtain Figures 4.20, 4.21, and 4.22, we computed the

correlation of ANFIS and ANN with measured data, which are gathered in Table 4.8.

As you see, the correlations of ANFIS are greater than the correlations of ANN in all

cases. This shows the superiority of ANFIS over ANN in predicting given data.

Table 4.8 : The correaltion of ANFIS and ANN estimations using all data, FMCG,
and non-FMCG.

ANFIS Correlation ANN Correlation
TOM 0.879 0.791

All Data SOV 0.984 0.943
Spontan 0.762 0.693

TOM 0.986 0.905
FMCG SOV 0.974 0.946

Spontan 0.834 0.751
TOM 0.795 0.577

Non-FMCG SOV 0.990 0.956
Spontan 0.820 0.520
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Figure 4.20 : Measured and predicted data using all data: (a)TOM. (b)SOV.
(c)Spontan.

43



Figure 4.21 : Measured and predicted data using FMCG data: (a)TOM. (b)SOV.
(c)Spontan.
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Figure 4.22 : Measured and predicted data using non-FMCG data: (a)TOM. (b)SOV.
(c)Spontan.
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4.4 A Decision Support System to Predict Advertising Awareness

We have employed aforemantioned methods, ANFIS and ANN, to construct a DSS to

predict advertising awareness. This DSS is programmed in MATLAB software, and

can be also used to estimate any other types of dataset. It has three main components

of each DSS, including data base, model base, and user interface. The model base

exploits ANFIS and ANN to predict the output values using inputs, and compare the

results. Figure A.21 shows the interface of the DSS with no uploaded dataset.

Figure 4.23 : The GUI of DSS.

As shown in Figure 4.24, all the inputs and TOM data are inserted in a single .txt

file from the Load Data panel. In the ANFIS panel, we considered 2000 epochs, and

30 percent test data, which were chosen randomly. To predict this dataset, we also

selected the optimal fuzzy sets for TOM using all data, i.e. bell-shaped MF with 3

function, as written in Table 4.3. The green dashed line and the bold black line show

the ANFIS prediction and measured data, respectively. According to Figure 4.25, the

test button of ANFIS panel is pressed and the error of ANFIS along with measured

data are plotted in the bottom part of the interface. The correlations of training and test

data are also calculated in the errors panel on the right side of interface.

In Figure 4.26, the prediction of ANN is added to the previsious estimation of ANFIS

method. This provides the ability to compare the results. Finally, as shown in Figure

4.27, by pressing the test data button of ANN panel, the error of this method added to

the bottom diagram. The correlation of ANN test is also appeared in the errors panel.
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Figure 4.24 : The interface with ANFIS prediction.

Figure 4.25 : The interface with ANFIS prediction and error.

Based on the correlation values of error panel, the outperformance of ANFIS is again

obtain by developed DSS.
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Figure 4.26 : The interface with ANFIS and ANN predictions and ANFIS error.

Figure 4.27 : The interface with ANFIS and ANN predictions and errors.
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5. CONCLUSION AND FUTURE WORKS

The proposed method, adaptive neuro-fuzzy inference system (ANFIS), is applied to

evaluate the effect of advertising on brand awareness. To evaluate the brand awareness

of 15 prominent Turkish brands, a field study was conducted and people were asked

to respond a questionnaire. There were 30 questions which formed the components

of brand awareness, and three marketing metrics including TOM, SOV, and spontan.

Since working with 30 variables is almost impossible, we used a dimension reduction

method to reduce the number of input variables. Using PCA for 30 given variables,

we obtained two principle components, plus GRP variable as the input variables. We

considered these three inputs, as well as TOP, SOV, and spontan as the output variables

of ANFIS. Each output variable was predicted separately and the prediction was also

tested by using test data.

To test the validation of ANFIS predictions, 30 percent of data were randomly split as

the test data and remained 70 percent were considered as training data. The RMSE

graphs of most of the predicitons were decreasing, i.e. the prediction is conducted

properly, and as training goes on, the errors were reducing in each epoch. The

correlations of measurements and the predicitons of ANFIS method represent the

power of estimations. According to these correlations, predicted data using SOV were

perfectly correlated with the measured SOVs. The correlation of TOM and spontan

were smaller than SOV’s, but their predictions were correlated with the measured data.

In order to analyze homogeneous companies in appropriate categories, we classified

the companies into two groups, FMCG and non-FMCG. The data of each group is

consistent with each other, and the errors of their separate predictions are less than

the pooled data. Using FMCG data, we estimated TOM, SOV, and spontan separately.

The correlations between given data and ANFIS prediction revealed that TOM was

the best predicited variable, followed by SOV which was estimated perfectly. And

the prediction of spontan was also considered as very good. Accordingly, using
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non-FMCG data, the prediciton of SOV acheived the best correlation among output

variables, followed by spontan and TOM, respectively.

If we observe TOM, SOV, and spontan with respect to the data type, i.e. all data,

FMCG, and non-FMCG, we can see that TOM was properly predicted using FMCG

data. SOV using using non-FMCG data was also reached the best predicition. And

spontan was perfectly estimated by FMCG data. Consequently, it is better to classify

the data set into FMCG and non-FMCG, then use ANFIS to predict brand awareness

data.

Among all these analyses, we achieved the highest correlation prediction of SOV.

The second correlation was the estimation of TOM using FMCG data. And,

spontan had the lowest correlation among other variables using all types of data. In

addition, considering the data of each company by itself, we considered very turbulent

correlation between predicted outputs and given data. In some cases the prediction is

highly correlated with given data, e.g. in E company’s prediction of SOV. On the other

hand, in other estimations we achived very low correlations.

Moreover, we considered ANN as the alternative prediction method and compared

the results with ANFIS. Based on our findings and the correlation of predictions,

ANFIS shows better performance than ANN in considering the same network

parameters. Consequently, we can claim that ANFIS outperforms ANN in estimating

our advertising awareness data.
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APPENDIX A.1

Table A.1 : Advertising awareness questions (in Turkish).

No Question
1 Güvenilirdir
2 Herkesin çalismak istedigi bir firmadir
3 yenilikçidir
4 yenilikçidir
5 Liderdir
6 Ekonomiye katkida bulunur
7 Itibarli ve saygindir
8 Kolaylikla erisebilecegim bir firmadir
9 Uluslarasi bir markadir
10 Genis bir ürün yelpazesi vardir
11 Günceldir, kendini yeniler
12 Muhafazakardir
13 Bana yakindir
14 Kadinlara yakin bir firmadir
15 Tüketicilerine deger verir
16 Olmasa eksikligini hissederim
17 Gurur duyarim
18 Içimizden biridir
19 Ürün/hizmetleri kalitelidir
20 ödenen paraya degerdir
21 Reklamlarini seyretmekten zevk aldigim bir firmadir
22 Eglenceli bir firmadir
23 Toplumsal projelere/ Sosyal sorumluluk projelerine önem verir
24 Çocuklari ve gençleri futbolu ve basketbolu sevmeye tesvik eder.
25 Türkiye’de sporun gelisimi için Kulüp ve spor organizasyonlarina yatirim yapar
26 Çocuklara yönelik sinema, tiyatro gibi kültürel aktiviteleri destekler
27 Müsterilerine/tüketicilerine her yerde çesitli mutluluklar sunar
28 Gençlere hitap eder
29 Çevreye duyarlidir
30 Sanata ve sanatin gelisimine katkida bulunur
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APPENDIX A.2

Figure A.1 : Membership functions of input variables for SOV estimation using all
data: (a)Factor1. (b)Factor2. (c)GRP.
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Figure A.2 : Membership functions of input variables for spontan estimation using
all data: (a)Factor1. (b)Factor2. (c)GRP.
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Figure A.3 : Membership functions of input variables for TOM estimation using
FMCG data: (a)Factor1. (b)Factor2. (c)GRP.
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Figure A.4 : Membership functions of input variables for SOV estimation using
FMCG data: (a)Factor1. (b)Factor2. (c)GRP.
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Figure A.5 : Membership functions of input variables for spontan estimation using
FMCG data: (a)Factor1. (b)Factor2. (c)GRP.
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Figure A.6 : Membership functions of input variables for TOM estimation using
non-FMCG data: (a)Factor1. (b)Factor2. (c)GRP.
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Figure A.7 : Membership functions of input variables for SOV estimation using
non-FMCG data: (a)Factor1. (b)Factor2. (c)GRP.

64



Figure A.8 : Membership functions of input variables for spontan estimation using
non-FMCG data: (a)Factor1. (b)Factor2. (c)GRP.
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APPENDIX A.3

Figure A.9 : Scatter plot of estimated and measured data of company A: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.10 : Scatter plot of estimated and measured data of company C: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.11 : Scatter plot of estimated and measured data of company D: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.12 : Scatter plot of estimated and measured data of company F: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.13 : Scatter plot of estimated and measured data of company G: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.14 : Scatter plot of estimated and measured data of company H: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.15 : Scatter plot of estimated and measured data of company I: (a)TOM.
(b)SOV. (c)Spontan.

72



Figure A.16 : Scatter plot of estimated and measured data of company J: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.17 : Scatter plot of estimated and measured data of company K: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.18 : Scatter plot of estimated and measured data of company L: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.19 : Scatter plot of estimated and measured data of company M: (a)TOM.
(b)SOV. (c)Spontan.
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Figure A.20 : Scatter plot of estimated and measured data of company N: (a)TOM.
(b)SOV. (c)Spontan.

77



Figure A.21 : Scatter plot of estimated and measured data of company O: (a)TOM.
(b)SOV. (c)Spontan.
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